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WORK DONE SINCE DECEMBER 1983

Erffor_s in the first area involve the design of

compensators for microburst disturbance rejection.

Preliminary results indicate improvements when the

microburst is modeled as a colored noise process. The second

task is to model the unsteady aerodynamic effects upon an

aircraft's longitudinal dynamics as related to the wind shear

encounter problem. The third effort concentrates on the

determination of optimal trajectories through microbursts.

Standard techniques of deterministic nonlinear optimal

control have been used. This is the main subject of this

presentation.

• STOCHASTIC LINEAR OPTIMAL CONTROL WITH COLORED NOISE

ASSIIMPTIONS

• UNSTEADY AERODYNAMIC EFFECTS UPON LONGITUDINAL DYNAMICS

• DETERMINISTIC, NONLINEAR, OPTIMAL CONTROL THROUGH GIVEN

MICROBURSTS
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DETERMINISTIC, NONLINEAR, OPTIMAL CONTROLPROBLEM

To calculate an optimal trajectory, one must have some
criterion by which a determination can be made of what is
optimal. For the unconstrained, fixed-time, free-end-point
problem, the criterion is that the scalar, positive definite
cost function, J, be minimized. In this formulation x is the
state vector, u is the control vector, and x = f(x,u,t)
defines the plant dynamics including disturbance inputs. J
is minimized by an appropriate choice of the control vector
time history. Because the aircraft plant dynamics are

represented by differential equations, the continuous-time

formulation of this problem seems natural. Numerical

solution techniques, on the other hand, are more appropriate
to the discrete-time problem. Therefore, a zero-order-hold

assumption is made for the control time history, and the

continuous-time problem is transformed into a discrete-time

problem. Now the optimal control problem is in the general

form of a static, finite-dimensional, constrained

optimization problem. Standard techniques may be applied.

Two such techniques are the Steepest-Descent and Newton's

Second Gradient methods. The Steepest-Descent method uses

an initial guess for the control time history, then

differentiates the cost with respect to it to determine an

optimization step that will yield the largest decrease in

the cost. Newton's method is merely a generalization of the

Newton-Raphson method for determination of a root of a

scalar equation. In this case it is applied to the set of

simultaneous equations which comprise the necessary
condition for optimality: dJ/duk = 0.0 for k = I...N-I. A

FORTRAN package was developed for the implementation of

these solution techniques. It uses 4th order Runga-Kutta

integration to transform the continuous time problem into

the discrete time problem. The Steepest-Descent method is

used for the initial improvements to the control time

history because it is cheaper per optimization step and

yields large changes in cost, J, per step when not in the

neighborhood of the optimum. Newton's method is used to get

to the final solution because it converges rapidly in the
neighborhood of the solution.
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CONTINUOUS TIME

GIVEN _(T O) =_Y_X), _ = F(_,_,T)

FIND _(T) FOR T O ( T ( T F

TF

TO MINIMIZE J =f L(_,M,T)DT + V(X(TF))

TO

GIVEN _XI , X_K+ I : .I:_(X.X_.K.,_U_K,K)

FIND 9-.K FOR K : I...N-1

N-1

TO MINIMIZE J : _ L(_K,LJK,K) + V(.X_.N)

K=I

SOLUTION TECHNIQUES

• STEEPEST DESCENT

• SECOND GRADIENT (NEWTON'S METHOD)
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COST FUNCTION HISTORY FOR A STEEPEST-DESCENT/SECOND GRADIENT

OPTIMIZATION

An optimal trajectory was calculated for the Boeing-727

model and the range dependent, sinusoidal microburst used in

previous studies. After each optimization step the cost

function was evaluated. This figure contains a plot of the

cost as a function of the number of optimization steps. It

took 51 steps to reach the optimum to within reasonable

accuracy. Thirty-four steps were Steepest-Descent steps, and

seventeen were taken using Newton's method. Note that the

Steepest-Descent portion of the optimization required only
about a third as much CPU time as the Newton's method

portion, despite the fact that there were twice as many

Steepest-Descent steps. This optimization probably could

have been done more efficiently by waiting longer to make

the switch from Steepest Descent to Newton's method. The

erratic pattern of the cost function decreases, though

typical of numerical optimization techniques, makes

automation of the switching process difficult.
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THREE TRAJECTORIESTHROUGHA MICROBURST

The results of this trajectory optimization are compared
with the results of two previous flights by the same model
through the same microburst: an open-loop flight and a
closed-loop flight. The control law used in the closed-loop
flight was the best so far designed by the author using
classical design techniques. On this plot the optimal
trajectory is indistinguishable from the nominal trajectory,
a -3 deg. glide slope. In fact, it deviated no more than
1.5 ft. from the nominal. The previously best trajectory
(the closed-loop run) yielded a 180 ft. perturbation, while
the open-loop perturbation was about I000 ft.
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THREE AIRSPEED AND THREE THROTTLE SETTING TIME HISTORIES

For the optimal case, it is interesting that the airspeed

variation is approximatly that of the microburst itself. The

optimum solution expends little effort in trying to maintain

airspeed. The airspeed for this case never comes near the

l-g stall speed, so no problem is encountered. The throttle

activity is much lower for the optimum case than for the

poorer performing closed-loop case. Its phase lead may

partially explain this. Both the airspeed and the throttle

time histories for the optimum case are perturbed from the

nominal prior to the initial encounter of the microburst.

This is due to the nature of the deterministic optimization;

the algorithm "knows" ahead of time what is about to happen

and acts accordingly. This behavior is also visible on the

next figure. This fact precludes the implementation of this

algorithm as a control law unless sensors can be developed

which sense the wind ahead of the aircraft (a possibility

which will be pursued at a later date). Also note that the

headwind, downdraft and tailwind zones marked are

approximate. The times of their encounters vary slightly from
case to case.
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THREE ANGLE-OF-ATTACK AND THREE PITCH-ANGLE TIME HISTORIES

The open-loop and closed-loop angle-of-attack time

histories are very similar to each other. The optimal angle-

of-attack time history is out of phase with the

corresponding airspeed variation. This indicates that the

optimal glide slope control is primarily by angle-of-attack

variation to maintain lift in the presence of airspeed

variations. The pitch-angle time history bears out this

interpretation, taking into account the changes in the

relationship between the two angles due to the wind

variations, In the openoloop and closed-loop cases, the

pitch-angle is not held low enough during the headwind zone,

and it is not held high long enough during the tailwind
zone.
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CONCLUS I ONS

A relatively large amount of computer time (64 minutes of

CPU activity on an IBM 3081 computer) was used for the

calculation of this optimal trajectory, but it is subject to

reduction with moderate effort. The Deterministic,

Nonlinear, Optimal Control algorithm yielded excellent

aircraft performance in trajectory tracking for the given

microburst. It did so by varying the angle of attack to

counteract the lift effects of microburst-induced airspeed

variations. Throttle saturation and aerodynamic stall limits

were not a problem for the case considered, proving that the

aircraft's performance capabilities were not violated by the

given wind field. All closed-loop control laws previously

considered performed very poorly in comparison, and

therefore do not come near to taking full advantage of

aircraft performance.

• DETERMINISTIC, NONLINEAR, OPTIMAL CONTROL, AN EFFECTIVE

THOUGH EXPENSIVE NOMINAL SOLUTION

• SUFFICIENT AIRCRAFT PERFORMANCE FOR SAFE ENCOUNTER OF

GIVEN MICROBURST

• INSUFFICIENCY OF PRACTICAL CONTROL LAWS STUDIED TO DATE
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PLANNEDFUTUREWORK

Effort will be made to reduce the CPU time per trajectory
optimization by improving the efficiency of the algorithm,
but the basic approach will remain the same. The microbursts
used thus far have been idealized. Microburst data from the
JAWS project will be used to get realistic wind fields.
These will be checked to see if and how any of these exceed
aircraft performance limits by doing trajectory
optimizations through them. Optimal trajectory solutions are
also greatly affected by variations of the cost functions,
L(x,u,t) and V[x(tf)]. These effects will be considered as
will the optimum for a general aviation aircraft. Once the
performance capabilities are well understood, the goal will
be to design practical control laws which come as closeto
these limits as possible. The use of lead information about
the wind shear will be considered during this phase to
determine what information would be useful to a closed-loop
control law. Unsteady aerodynamics effects remain to be
studied to determine their impact on the validity of the
aircraft models used here.

, DETERMINISTIC,NONLINEAR,OPTIMALCONTROL(DNLOC)ALGORITHM

IMPROVEMENTS

• FUTUREOPTIMIZATIONRUNS

+ JAWS MICROBURSTS

* VARYING COST FUNCTIONS, L(_,_,T), V(X(TF))

* GENERAL AVIATION AIRCRAFT

• PRACTICAL CONTROL STRATEGIES APPROACHING OPTIMUM PERFORMANCE

• UNSTEADY AERODYNAMIC EFFECTS
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